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Abstract 

The extinction factor r/was numerically calculated for 
spherical crystals based on the new statistical 
dynamical theory [Kato (1976). Acta Cryst. A32, 
458-466]. The optical paths in the Bragg case and 
other geometrical cases such as the Laue-Bragg-Laue 
are properly treated, so that the accuracy is estimated 
to be 0.1% for/~0 R < 3.0, oR < 2.0 and O n < 30 ° (#0 
absorption coefficient, tr the coupling constant of the 
energy transfer equations, O n the Bragg angle). Based 
on these calculations a universal fitting function r/(#0 R, 
trR, 8n) is proposed in the above-mentioned domains. 
The accuracy is better than 0.4% if r/is larger than 
10%. The difference between the present and the 
conventional theories is significant if the extinction 
exceeds 20%. 

In the present calculation, the correction is made 
approximately by using the rigorous solutions avail- 
able for trapezoidal crystals. Not only the numerical 
values for a discrete set of parameters/uoR, oR and On, 
but also an analytical fitting function will be presented. 
Here, R is the radius of the crystal and tr is the coupling 
constant of the basic energy transfer equations./a 0 and 
O n are the normal absorption coefficient and the Bragg 
angle, respectively. So far, to our knowledge, no such 
universal function has been presented. 

The second aim is to illustrate the numerical 
difference between the conventional and present 
theories. Again, so far, it has been demonstrated only 
for parallel-sided crystals (Kato, 1982). Then, a 
significant discrepancy of more than 10% was noticed 
when the extinction factor was less than about 25%. A 
similar result is obtained here for spherical crystals. 

1. Introduction 

One of the authors has proposed a new theory on 
secondary extinction (Kato, 1976, 1979, 1980, 1982). 
The present paper is written for two purposes. The first 
is to calculate numerically the extinction factor for 
spherical crystals, which are often used for accurate 
determination of crystal structures. So far, the cal- 
culation has been made only for parallel-sided crystals 
(Kato, 1980), for simplicity. For finite crystals like a 
cylinder and a sphere, the application of the simplest 
solution of the energy transfer equations in the Laue 
cases is insufficient to obtain the diffracted intensity 
for the whole crystal, because the optical paths in the 
Bragg cases and other geometrical cases are involved. 

2. The theoretical basis 

In order to obtain the fundamental equation to describe 
secondary extinction the following energy transfer 
equations (ETE) are assumed (Kato, 1976). 

- - -  -#eI0 + trig (la) 
OSo 

~s~ 
----/Heir + trl o, (lb) 

where I 0 and I~ are the total intensities carried by the 
direct (O) and Bragg-reflected (G) beams. They 
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propagate along the directions So and sg, respectively, g~ 
is the effective absorption coefficient defined by 

g~ = g0 + o. (2) 

The coupling constant o in (1) and (2) has the form 

a = 2r2/A 2, (3) 

where rE is the correlation length of the lattice phase 
factor [equation (2), Kato (1976)] and A is the 
extinction distance.* 

The following boundary conditions are assumed for 
solving (1). 

Is(so,0 ) = (1/A 2) E e exp --geSo (4a) 

Io(0,sg) = 0, (4b) 

where E e is the total incident energy per unit time at the 
entrance point. Henceforth, it is assumed to be unity. 
The justification for the boundary conditions (4) is 
discussed in a previous paper (Kato, 1980). If the 
dynamical parallelepiped (DPE) effective at the obser- 
vation point (So,Sg) is not truncated by other crystal 
surfaces (Fig. la), the solution of (1) is given by~ 

I # =  (1/A2)Io[20(SoSg) 1/2] exp--[lle(S 0 + Sg), (5) 

where I 0 is the modified Bessel function of zeroth order. 
Expression (5) is called the formula of the Laue case in 
this paper. When the DPE is truncated, one needs to 
subtract another term from I~, because the beam paths 
passing through the protruding part of the DPE have to 
be excluded from the calculation. The dotted paths in 
Fig. 1 are the examples. The two cases, BI and BII, 
illustrated by Figs l(b) and (c) must be distinguished. 
As a whole, however, they are referred to the 
Laue-Bragg-Laue cases. If the truncation boundary is 

a straight line, the terms to be subtracted are given in 
the form 

Ig BI = ( l /a)  2[ PoPJ(SoSg - qo qg)] 

x I2[2O(SoSg- qo qg)l/2] exp-pc(So + sg) (6a) 

Ig TM = (l/A) 2 Io[ 2O(SoSg - qo qg) 1/2] exp --Pc(So + Sg), 

(6b) 

where Is is the modified Bessel function of second order 
and the meanings ofp 0, pg, qo and qg are shown in Figs. 
1 (b) and (c). 

The case BI reduces to special cases; i.e. the 
Laue-Bragg (qo = 0, P0 = So), the Bragg-Laue (qg = O, 
pg = sg) and the Bragg cases (q0 = qg = 0, P0 = So, 
pg = sg). Mathematically speaking, the expressions for 
these cases have been obtained in wave-optics 
dynamical theory by Saka, Katagawa & Kato 
(1972a,b, 1973). If one replaces (xgx_g) 1/2 by itr, the 
results (6) can be derived. The simpler derivation will 
be reported elsewhere. 

The integrated intensity for a finite convex crystal is 
given by 

R e = A,(sin 2On) -2 Y f f Ig(E,A) dX E dX A d Y, (7) 

where E and A are referred to the entrance point and 
the exit point, respectively. Ig(E,A) is the angularly 
integrated intensity for a pair of E and A. In the Laue 
case, for example, (5) can be used for Ig(E,A). The 
integral elements dX E and dX A are taken perpendicular 
to the direct (O) and the Bragg-reflected (G) beams, 
respectively, in the reflection plane and d Y is per- 
pendicular to dX r and dX A. 

The extinction factor is defined by 

n -  (8) 

* A - l  = r c ( A / v ) l F & l C .  A is the wavelength, v is the volume of the 
unit cell, r c is the classical radius of the electron, IFgl is the structure 
factor, C is the polarization factor. In this paper, IFgl = IF gl is 
assumed. 

t The expression for the direct beam is given by Kato (1976). 

where Rg r is the kinematical integrated intensity per unit 
intensity of the incident beam in non-absorbing 
crystals. It is given immediately from (7) in the form 

Rgr= (k/sin 20B)A -2 V -  QV, (9) 

II / 

(a) 

. /~ _ ~ p / _  A 

(b) 

qo / Po. 

- e ~  Y 

(c) 

Fig. 1. The three cases of the truncation of the part of the crystal effective in the dynamical diffraction. (a) No truncation, (b) the case of 
BI, (c) the case of BII. 
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where V is the volume of the crystal.* The absorption 
factor is defined by 

A = f exp -/to(S0 + sg) dr, (10) 
v 

the integration being taken over the crystal. 

3. Numerical calculation of  the extinction factor 

In this section, the procedures are outlined when 
neglecting the truncation of the DPE, so that (5) is used 
for Ig(E,A). The correction due to the truncation will be 
explained in the next section. 

Cylinder: The axis of the cylinder is assumed to be 
perpendicular to the reflection plane. The integrated 
intensity must be a function of a = (/to + a )R,  fl = oR 
and the Bragg angle 08, where R is the radius of the 
cylinder. For this reason, Rg values were calculated for 
a discrete set of three variables of ~, fl and 0 B. The 
ranges of calculation and the intervals are listed in 
Table 1. The integration in (7) is essentially two- 
dimensional, d Y being redundant in this case. 
Simpson's method was used in the numerical 
integration. 

Sphere: Similarly to the case of the cylinder, the 
extinction factors were calculated at a set of discrete 
values of a, fl and 0 8 listed in Table 1. Obviously, a 
single r/value can be obtained by the three-dimensional 
integration. In practice, however, the results of the 
cylindrical case were stored in the data file and the 
Lagrange interpolation method was employed for 

* Note that the volume element is dv = (sin 2~B) dX E dX~ d Y. 

calculating Rg(Y) for every circular section specified by 
the parameter Y. Thus, the integration was essentially 
one-dimensional. 

For the sake of cross checking, the three-dimensional 
integration was carried out directly with (7) at a few 
sets of a, fl and 0 B values. It was confirmed that the 
agreement between the r/ values calculated by the 
different methods was better than 0.5~oc,. 

4. The correction for the truncation of  the DPE 

Here, the procedures are explained in detail for the case 
of BI. The same procedures were applied also to BII. 
First, we consider the case of the cylinder. If the DPE 
of a pair of E and A is truncated by the arc T 1 T 2 (Fig. 
2), the crystal is approximated by the trapezoid 
EFA T I T  2. Then, the correction (subtraction) term can 
be obtained with (6a) for Ig(E,A) of (7). This term is 
called the first-stage correction. 

Obviously, now, the correction is overestimated 
because the part of the crystal between the arc T~ T 2 
and the straight line T~ T z is ignored. At the second 
stage, therefore, we took the trapezoid EFA T[ T~, where 
7"1' T~ is the tangent of the cylinder parallel to T I T z. 
The true correction must lie between the corrections of 
the first and second stage. 

Finally, partly for this reason but with intuition, we 
took the trapezoid EFAT~' T~', which has the same 
volume of crystal as EFAT~ T 2. Again, T;' T~' is 
parallel to the line T I T 2. Table 2 shows the numerical 
examples of the correction of each stage for / t  o R = 0. 
The correction is significant for larger values of oR and 
O n. Fig. 3 shows the / t  oR dependence of the correction 

Table 1. The range and interval o f  the numerical 
calculation 

oR =/~:0.0 ~ 2.0;0.1 
/~o R = ~t-13:0.0 ~ 3.0;0.1 

0s:0.0 ~ 30°; 2.5 ° 

r~, 
T~' 

T 

T i / ~  A 

Fig. 2. The trapezoidal approximation. 

Table 2. Examples of  the trapezoidal approximation 
(/toR = 0); cylindrical crystals 

oR = 1.0 oR = 2.0 oR = 1.0 oR = 2-0 
Parameter On = 15° On = 15° On = 30° 0B = 30° 
r/ 0.3032 0.1659 0.3306 0.1934 

stage I 0.0003 0.0007 0.0054 0.0096 
Aq stage II 0.0001 0.0003 0.0026 0.0046 

stage III 0.0002 0.0004 0.0035 0.0055 

4.0 .  oR = 2 .0  

A~/rl 

2.0 

~ ~ =  15 ° 

0 .0  , 

0.0  1'.0 2'.0 310 
goR 

Fig. 3. The final correction in percentage of r/. 
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in percentage of r/. For smaller/t0R, it increases with 
¢toR because r/ decreases more rapidly than the 
correction, which is essentially the surface effect. For 
larger /~0 R, however, the correction decreases with 
/6R.  In this case, the diffraction is essentially 
kinematical, whereas the correction is required when 
multiple reflections are predominant. For this reason, 
the correction becomes less significant for larger ~t 0 R. 
The validity of the trapezoidal approximation explained 
here will be discussed in § 6. 1o1  

00] , s ino .=os . : ,  = o o  

0.0 1.'0 ~-27t, 272 210 
(a) 

r/ flK~(272) 

0-0 1-0 ~ 271, 272 2.0 

(b) 
Fig.  4. C o m p a r i s o n  be tween  the ca lcu la t ions  of  Becker  & C o p p e n s  

and  those  of  the presen t  work  for rl/Ak(a) sin 0 = 0-5,  #0 R = 
0 . 0 ;  (b) sin 0 =  0-5,  #oR = 2.0,  2;1 = "v/2aR, 2;2 = aR.  

It is straightforward to apply the above calculation 
to the spherical crystal. The procedures are the same as 
those explained in § 3 for the main term. 

The extinction factors were recalculated with the use 
of the final corrections. Examples are shown as the 
curves denoted by r/K K in Fig. 4. 

5. The functional fitting 

For practical uses of the present calculation, it is 
desirable to represent r/ as an analytical function of 
three parameters, a, fl and 0B. Then, extinction 
correction can be practised easily in structure analysis. 
After a few trials, it was found that the following 
expression was useful both for cylindrical and spherical 
crystals. 

r /=  exp{- [Ca  + D(O)a 2 + G(O)fl2]} 

x exp[ ~ct'Em'natt,m,. fl2mc°sn(2OB)] " (11) 

Table 3. The coefficients of the cumulant factor 

Cyl inde r  
D O = -5 .898306  x 10 -2 
D 1 = - 2 . 5 5 3 5 8 9  x 10 -5 
D 2 = --5.403935 x 10 -1° 
D 3 = 7.100944 x 10 -14 

Sphere  
D o = - 0 . 1 1 1 1 1 0 3  
D l = - 1 . 7 0 1 2 3 5  x 10 -5 
D 2 = -3 .646856  x 10 -1° 
D 3 = 4.828941 x I0 -14 

G o = -0 .4999730  
G I = -2 .554632  x 10 -5 
G2 = -4 .678440  x 10 -1° 
G 3 = 6.156740 x 10 -14 

G o = -0 .3333212  
G I = - 1 . 7 0 1 1 1 3  x 10 -5 
G 2 = -3 .249776  x 10 -1° 
G 3 = 4.337572 x 10 -14 

Table 4. The least-squares coefficients of the remainder factor 

Max. deviation 0.787% 
Standard deviation 0.437% 

Sphere  
c300 c120 c400 c200 c040 c500 c320 c140 

0.0905622 -0 .633457  -0 .0543295 0.251772 0.0373821 0.00817658 -0 .0344214  -0 .00941525 
c301 c121 c401 c221 c041 c501 c321 c141 
-0 .276338  1.44013 0.177331 -0 .823258  -0 .0828162  -0 .0299750  0.132249 0.0191922 
c302 c122 c402 c222 c042 c502 c322 c142 

0.384142 -1 .48413  -0 .212689  0.940510 0.0712921 0.0370758 -0 .164276  -0 .00936756  
c303 c123 c403 c223 c043 c503 c323 c143 
-0 -188864  0-596664 0.0887762 -0 .368624  --0.0331277 --0.0153002 0.0668285 0.00208394 

Max. deviation 0.436% 
Standard deviation 0.177% 

Cy l inde r  
c300 c120 c400 c220 c040 e500 c320 c140 

0.0518655 -0 .575144  -0 .0185806  0.154378 0.0425078 0.00361003 -0 .0215008  -0 .0049286  
c301 c121 c401 c221 c041 c501 c321 c141 
-0 .00983204 0.806559 -0 .0101829  -0 .320742  -0 .0689021 -0 .00751437  0.0733876 -0 .0150964  
c302 c122 c402 c222 c042 c502 c322 c142 

0.00348695 -0 .410757  0.0724167 0.132462 0.0421504 0.00250727 -0 .0708694  0.0478474 
c303 c123 c403 c223 c043 c503 c323 c143 
-0 .0336315 0.105244 -0 .0433543 0.0270721 -0 .0338989  0.00126424 0.0195296 --0.0224710 
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The first factor is called the cumulant factor, which 
ensures fitting to the calculated values for small a and 
ft. The second factor is called the remainder, which is 
introduced for better fitting within the range of 
calculation. 

From the definition (7) of the integrated intensities 
Rg, it is expected generally that r/ must be an even 
function of fl and 0 n. The right side of (11) meets this 
requirement. 

For finding the cumulant coefficients, (5) is assumed 
for Ig(E,A) in (7), for simplicity. Then, it turns out that 

C = (s o + sg) = ~ z  (cylinder) 

_ 4  (sphere) 

(12a) 

(12b) 

(12c) 

(12d) 

D = ½C2- ½((s0 + Sg) 2) 

G = -(SoS~}, 
where ( )  implies the average over the crystal. The 
coefficients D and G must be angular-dependent so that 
they are developed in the form of power series of O n in 
degrees: 

D(On)=Do + 4D, Og + 16D204s + 64D306 s (13a) 

G(On)=G o + 4GIO2s + 16G2 04 + 64G3 0s 6. (13b) 

The left-hand sides were calculated numerically from 
(12). Based on these results, the coefficients D t and G t 
were determined by least squares. They are listed in 
Table 3. 

The next problem is to find the coefficients in the rest 
of (11). The terms in the exponent were limited by 
imposing the conditions 

3 _< l + 2m < 5, 0 < n < 3 (14a,b) 

on the indices. Including the terms of higher orders did 
not improve effectively the fitting. For describing the 
angular dependence cos 20 n was used instead of 02 
merely as an empirical reason to attain better results. 
The 32 coefficients, in total, were determined by least 
squares in three-dimensional space. The results are 
listed in Table 4. In this calculation, of course, r/values 
including the correction of stage III were employed. 
The maximum deviation in fitting was 0.79 (cylinder) 
and 0.44% (sphere) of r/, provided that r/is larger than 
0.1. 

6. Discussion and conclusions 

6.1. The accuracy of  the present calculation 

The numerical error (At/) due to computation was set 
to be ess than 17oo of r/. In the case of the functional 
fitting, the maximum deviation was confirmed to be less 
than 0.4% of r/. The formula (11), therefore, should be 
used with this accuracy. For work requiring higher 
accuracy, it is recommended to file a set of computed 
values of r/and to use Lagrange interpolation. 

It is not easy to evaluate precisely the accuracy of 
the trapezoidal approximation described in § 4. The 
true value of the correction for the truncated DPE 
must be between the corrections of stages I and II. The 
maximum estimation of the error, therefore, is the 
difference of the relevant two figures listed in Table 2. 
Arl/rl amounts to a few percent in the worst case. 

Obviously, the above estimation is rough and 
excessive. Fortunately, Hamilton (1963) reports a 
numerical solution of the recurrence formulae equiva- 
lent to (1) in the case of non-absorbing cylindrical 
crystals. The agreement between his results and ours is 
better than 2 ~  within the domain of our calculation. 
For this reason, it is reasonable to take this figure as a 
measure of accuracy of the present calculation with a 
safety margin. We, however, believe that the present 
calculation could be used with accuracy of 1 ~  from 
the numerical analysis of the correction term. 

It must be emphasized that the correction for the 
truncation of the DPE is necessary for any work which 
requires accuracy better than a few percent in structure 
factors. In this respect, the results of Becker & 
Coppens (1974) are not correct. 

6.2. The comparison between the present and tradition- 
al theories 

The following has been discussed by one of the 
present authors (Kato, 1982) in the simplest case of 
parallel-sided crystals. Here, it is shown that similar 
conclusions are obtained also in the case of spherical 
crystals. 

According to the new theory of secondary ex- 
tinction, two tasks have to be distinguished. One is to 
obtain the extinction function tl(a,fl, On). The principal 
part of the present work is this task for cylindrical and 
spherical crystals. Another is to find the coupling 
constant o or, more precisely speaking, the correlation 
length v 2 based on the model of crystal textures. 
Incidentally, the function r/(a, fl,0n) is model- 
independent. 

The simple and popular model of the texture is 
'mosaic crystals'. Optically speaking, however, 'cohe- 
rent domain model' would be appropriate so that 
'mosaic crystallites' in the traditional usage is replaced 
by 'coherent domain'. With this model, ~'2 can be 
calculated as follows (Kato, 1982): 

+oo 
r2= ½ f {Z(O}2d~, (15) 

--00 

where 
2 +oo oo s in{(~ ~(p) l } 

Z ( 0 = -  ~" O(~p)d~pf L(I) + dl (16) 
J J Z~+ a~ 

--o0 0 

is the Fourier transform of the correlation function f ( z )  
of the lattice phase factors. Here, O(tp) is the 
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normalized distribution function of the coherent do- 
mains and L(1) is the normalized distribution function 
of half of the domain size, l. 

The model must be specified further by taking any 
specific distributions of O(~o) and L(1). For example, 
one can take 

#(tp) = v/2g exp {--2~zg 2 ~0 2 } (17a) 

;z 
L(1) = ~ (l/? 2) exp{-(zd4) (l/?)2}, * (17b) 

where i is the mean value of l. Then, one obtains 

r 2 = (i/V/2) (1 + 2x2) -v2, (18) 

where 

x = (sin 20J2)  i/g. (19) 

The conventional theory has a different theoretical 
scheme from the present one. The extinction factor r/is 
a functional of q~(~0) and L(l), in general. Becker & 
Coppens (1974) avoid this complexity by assuming 
some ad hoe treatments. For example, the domain size 
is assumed to be spherical and the averaged diffraction 
function in intensity, b(~ + a~0), of the coherent domain 
is assumed Gaussian or Lorentzian without any 
justification. Nevertheless, finally, they obtained the 
expression for r/as a function of x defined by (19) for a 
Gaussian distribution of q~(~0) and b(~ + a~0). 

In order to compare their numerical results with 
ours, we shall write their extinction factor for the 
Gaussian distributions of ~(~0) and b(~o) in the form 

rlBc = rIBc( X1,M, OB), (20) 

where 

XI=( iR/A2)(1  + 2x2) -1/2, M=taoR.  (21a,b) 

The functional form r/B c is drawn in Fig. 4. The present 
results [(3) and (18)] give the numerical values of r/in 
the form 

r/z z = rIKK(272,M, OB), (22) 

* 5~ dl in (16) gives the Gaussian distribution of ~ + a(0. 

Table 5. A comparison between the Becker & Coppens 
(19 74) and the present results 

Arl/rl (in %) 

/.toR 0.0 0.0 1.0 1.0 2.0 2-0 
sin 0 0.2 0.5 0.2 0.5 0.2 0.5 

q 
0.8 l 1 1 1 3 3 
0.6 5 6 5 5 9 8 
0.4 13 14 13 II 17 - -  

where 
z,~ = s ,  lv r~.  (23) 

By changing the scale of ordinate from 272 to 271' Fig. 4 
includes the curves of r/KZ(Z'I/V/2), which should be 
compared with r/Be(271).* 

With this analysis, it is concluded that r/Be(271) > 
r/KK(271/V/2). The disagreement increases with 271-The 
percentage differences are listed in Table 5. The 
difference is significant unless the extinction is less than 
about 20%. 

Finally, one remark is mentioned. So far, we have 
used the terminology of 'extinction factor' to include 
the absorption effect. As is easily seen from the 
physical meanings of extinction and absorption, the 
'extinction factor' must be a function of aR, (a + la o) R 
and 0 n. For this reason, the present treatment is more 
reasonable than the traditional treatment, in which the 
absorption and extinction factors are treated 
separately. 

* M and 0 B are dropped. 
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